Decomposition of Variance for Spatial Cox Processes
نویسندگان
چکیده
منابع مشابه
Moment estimation methods for stationary spatial Cox processes - a comparison
In the present paper we consider the problem of fitting parametric spatial Cox point process models. We concentrate on the moment estimation methods based on the second order characteristics of the point process in question. These methods represent a simulation-free faster-to-compute alternative to the computationally intense maximum likelihood estimation. We give an overview of the available m...
متن کاملFast Block Variance Estimation Procedures for Inhomogeneous Spatial Point Processes
We introduce two new variance estimation procedures by using non-overlapping and overlapping blocks, respectively. The non-overlapping block (NOB) estimator can be viewed as the limit of the thinned block bootstrap (TBB) estimator recently proposed in Guan and Loh (2007), by letting the number of thinned processes and bootstrap samples therein both increase to infinity. Compared to the latter, ...
متن کاملVariance Estimation for Statistics Computed from Inhomogeneous Spatial Point Processes
This paper introduces a new approach to estimate the variance of statistics that are computed from an inhomogeneous spatial point process. The proposed approach is based on the assumption that the observed point process can be thinned to be a second-order stationary point process, where the thinning probability depends only on the first-order intensity function of the (unthinned) original proce...
متن کاملProperties of Spatial Cox Process Models
Probabilistic properties of Cox processes of relevance for statistical modeling and inference are studied. Particularly, we study the most important classes of Cox processes, including log Gaussian Cox processes, shot noise Cox processes, and permanent Cox processes. We consider moment properties and point process operations such as thinning, displacements, and superpositioning. We also discuss...
متن کاملAccelerated decomposition techniques for large discounted Markov decision processes
Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scandinavian Journal of Statistics
سال: 2012
ISSN: 0303-6898
DOI: 10.1111/j.1467-9469.2012.00795.x